Def: The spectrum of A, denoted SpecA, is the set of all prime ideals in A. The prime ideals are the <u>points</u> of SpecA.

Ex: If $A = k[x_1, ..., x_n], k = \overline{k}$, the points of Spec(A) correspond to the subvarieties of A^n . (i.e. not just the points of A^n , which only corr. to max ideals, i.e. maxSpec(A))

$$E_X: Spec \mathcal{R} = \{(0), (2), (3), (5), (7), ... \}$$

Ex: let $A=(k[x])_{(x)}$, i.e. the polynomial ring localized at (x). Then the only prime ideals are (o) and (x), so Spec(A) is just two points

In fact, this generalizes to any local ring of a point on a curve $O_p(c)$. C(corr. to o)

Spec
$$(\mathcal{O}_p) = \{ \mathcal{M}, (o) \}$$

(corr to
max ideal m)

Let $\varphi: A \rightarrow B$ be a ring homomorphism (which we will always require to send $l \rightarrow l$).

Then if $P \subseteq B$ is a prime ideal, $4^{-1}(P) \subseteq A$ is also a prime ideal (Exer: check this!!). So 4 induces a map

$$f: \operatorname{Spec} \mathcal{B} \longrightarrow \operatorname{Spec} \mathcal{A}$$
$$P \longmapsto \mathcal{Y}^{-'}(P)$$

Ex: Consider the inclusion $4: \mathbb{R} \to \mathbb{Z}[i]$. This induces $f: \operatorname{Spec} \mathbb{Z}[i] \to \operatorname{Spec} \mathbb{Z}$. (Note that $f^{*}(o) = (0)$) What is $f^{-1}((\mathbb{P}))$, for $\mathbb{P} \in \mathbb{Z}$ prime? It is the prime ideals $\mathbb{Q} \subseteq \mathbb{Z}[i]$ s.t. $\mathbb{Q} \cap \mathbb{Z} = (\mathbb{P})$.

 $\mathcal{R}[i]$ is a PID, so Q = (q) and recall:

• If p=3 mod 4, it is prime in R[i].

• If
$$p \equiv 1 \mod 4$$
, then $p = (a + bi)(a - bi)$, some a, b ,
• and if $p = 2$, then $p = i(1 - i)^2$

So we can visualize this as:

$$(3-2i)$$

 $Spec R[i] = (1-i) (3) (2+i) (4) (11) (3+2i)$
 $Spec R[i] = (1-i) (3) (2+i) (1-i) (3+2i)$
 $(3+2i) (3+2i) (3+2i) (3+2i) (3+2i)$
 $(3+2i) (3+2i) (3+2i) (3+2i) (3+2i) (3+2i) (3+2i)$

Ex: let A be a ring and PEA a prime ideal. Recall that the localization

$$A_{p} = \left\{ \frac{a}{b} \mid a, b \in A, b \notin P \right\},$$

and
$$\frac{a}{b} = \frac{a'}{b'} \quad \text{if } \exists s \notin P s.t. \quad s(ab' - a'b) = 0.$$

We have a natural homomorphism

 $\begin{array}{c} \varphi: A \longrightarrow A_{p} \\ a \longmapsto \frac{a}{l} \end{array}$

and the prime ideals of A_p are of the form A_pQ for $Q \in P$. i.e.

f: Spec
$$A_p \rightarrow$$
 Spec A is an inclusion and
 $f^{-1}(\{Q\}\}) = \{A_p(Q\}\}.$
(If you are in 523, we will be seeing this Foon)

Ex: If $I \subseteq A$ is any ideal, then the primes in A/Iare exactly those of the form P/I, $P \supseteq I$, so the quotient map induces the inclusion

Spec
$$A_{I} \rightarrow Spec A$$

 $P_{I} \longmapsto P$

local properties of SpecA

If V is an affine variety, $\Gamma(V)$ its coordinate ring, then the elements of $\Gamma(V)$ are k-valued functions on V (regular functions). By choosing coordinates, we can write $f \in \Gamma(V)$ as a polynomial, and then evaluate at each point.

However, there is a purely ring-theoretic way to do this via the residue field:

Let O_x be the localization of A at the ideal x. This is called the local ring at x, w/ max' | ideal m_x .

The residue field at x, denoted k(x), is the quotient $k(x) := \frac{\Im x}{m_x}$

So we have natural maps

$$A \longrightarrow \mathcal{O}_{\chi} \longrightarrow k(\chi)$$
$$a \longmapsto a_{1} \longrightarrow \overline{a_{1}}$$

and the kernel of $A \longrightarrow k(x)$ is $x \in A$.

If k is alg. closed, and $A = \Gamma(V)$ for some affine variety V, and x a max'l ideal, then k(x) = k, by the Nullstellensatz.

Ex: If
$$x = (x_{1,3}x_{2} - 1, x_{3} - 2) \subseteq A = k[x_{1,3}x_{2,3}x_{3}]$$
, then
 $k(x) = \frac{A}{x} = k$.

If we take an elt in $\Gamma(A^3) = k[x_1, x_2, x_3]$, say $f = x_1^2 + x_2^2 + x_3^2$. Then the image of f in k(x) is $f(x) = 0^2 + 1^2 + 2 = 3$.

That is, the map $A \rightarrow k(x)$ is evaluation at x in This case, and in this way, f is a function on the points of A^3 , i.e. the max ideals in A.

What if we choose a non-maximal prime?

Let
$$q = (x_1)$$
. Then $k(q) = {k[x_1, x_2, x_3]} q_{(x_1)} q_{(x_1)} q_{(x_2, x_3]} q_{(x_3, x_3]} q_{(x_$

More generally, for an arbitrary ring A, fEA still can be "evaluated" at each point x E SpecA via

$$x \mapsto f(x) \in k(x)$$

but at each point x, it takes a value in a different set.

$$a \leftrightarrow \frac{\alpha}{1}$$

In classical AG, the elements of $\Gamma(V)$, where V is an affine variety, are uniquely determined by their values at the points of V. However, this is no longer true in the general case:

Ex: let
$$A = \frac{k[x]}{(x^2)}$$
. Then Spec $A = \{(x)\}$.

Consider the "function" $x \in A$. Then, evaluating at (x), we get $A \longrightarrow \frac{k(x)}{x} \cong k$ $x \longmapsto 0$ so x is the zero function on SpecA, even though $x \neq 0$.

In general, this will be the case for every nilpotent element of A (i.e. $f \in A$ s.t. $f^*=0$ for some n).

Regular points and tangent spaces

Recall from CA:

A ring R is Noetherian if given any chain of ideals $I_0 \subseteq I_1 \subseteq ...,$

there is some h s.t. $I_n = I_{n+1} = \dots$

R is local if it has a unique max'l ideal m.

We say that a chain of prime ideals Po & Pi & ... & Pn

in R has length h, and the dimension of R is the supremum of lengths of all chains of prime ideals.

so e.g. dim k[x]=1, dim k=0. More on this later.

A Noetherian local ring
$$(R, m)$$
 is a
ring $\lim_{\substack{n \neq n \\ ideal}}$
negular local ring if
min # of generators of $m = \dim R$
 $\left(\dim_{k} m/m^{2}, where k = R/m\right)$

Now we can define the purely ring-theoretic formulation of regular points:

Def: A point
$$x \in SpecA$$
 is regular (or nonsingular) if the local ring O_x is a regular local ring.

For SpecA, if x & SpecA is not maximal, we will laker see that regularity of x means the corresponding variety is not contained in the locus of singular points of V.

If
$$x \in Spec A$$
 is regular, then the tangent space
has the same dim as O_x :

Def: let
$$x \in \text{Spec } A$$
, and \mathcal{O}_{π} Noetherian w/\max'
ideal m_{π} . The Eariski tangent space to
SpecA at π is
 $T_{\pi} = \text{Hom}_{k(\pi)} \binom{m_{\pi}}{m_{\pi}^{2}}, k(\pi)$,
i.e. the dual vector space to $\frac{m_{\pi}}{m_{\pi}^{2}}$.
Ex: let $A = \frac{k[\pi_{1}g]}{(\pi^{2}-g)}$. What is the tangent space
to SpecA at (x, g) ?
 $k(\pi) = A_{(\pi,g)} = k$, and $m_{(\pi,g)} = (\pi, \pi) = (\pi, \pi^{2}) = (\pi)$.
So $\frac{m_{(\pi,g)}}{m_{(\pi,g)}} = \frac{(\pi)}{(\pi^{2})}$, which is $1 - \dim$.
Thus, $\dim T_{(\pi,g)} = 1$, as expected.
Ex: What is the dim of $T_{(\pi)}$ in Spec $k[\pi, g]$?
 $k(\pi) = \binom{k[\pi, g]}{(\pi)} = \frac{\pi}{(\pi)} = k[g]_{(G)}$, i.e. the field
of fractions.

Ex: In Spec R, the points are of the form (0) or (p) for pe R some prime.

If x = (0), Then $\mathcal{O}_{x} = \mathcal{N}_{(0)} = \mathbb{Q} = k(x)$. $m_{x} = (0)$, so T_{x} is 0-dimensional, and x is regular. If x = (p), then $\mathcal{O}_{x} = \mathcal{N}_{(p)}$ and $k(x) = \mathcal{N}_{(p)}$. So $T_{x} = \operatorname{Hom}_{\mathbb{Z}/(p)} \binom{(p)}{(p^{2})}, \mathcal{N}_{(p)}$, which has dim l (check This!).

We will come back to this in a few weeks.